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Abstract. We describe our experience in developing a predictive model
that placed a high position in the BigDEAL Challenge 2022, an energy
competition of load and peak forecasting. We present a novel procedure
for feature engineering and feature selection, based on cluster permu-
tation of temperatures and calendar variables. We adopted gradient
boosting of trees and we enhanced its capabilities with trend modeling
and distributional forecasts. We also included an approach to forecasts
combination known as temporal hierarchies, which further improves the
accuracy.
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1 Introduction

Load forecasting is the problem of predicting the future profile of power de-
mand, while peak forecasting is the problem of predicting the maximum (e.g.
daily) value of demand and the time of its occurrence. Peak forecasting is im-
portant because often decisions are made based on the forecast of the peak
rather than on the forecast of the entire load profile.

In this work, we present an approach that successfully competed in the
BigDEAL Challenge 2022, which was about energy load and peak forecasting.
The competition was held in October-December 2022; 121 contestants took
part, divided into 78 teams. The forecasts were assessed using different indica-
tors and the competition was split into a qualifying match and a final match.
We achieved the 3rd position in the qualifying match, gaining access to the
final match, where we ended 6th [16].

For the qualifying match, we used Gradient Boosting (GB) of trees, coupled
with an original method for feature engineering and feature selection. For the
final match, we developed a more sophisticated approach. In particular, we
adopted a recent probabilistic version of LightGBM [28] and used temporal
hierarchies [3] in order to improve the forecasts by combining predictions at
different temporal scales. Even though the competition only scored the point
forecasts, our approach is probabilistic and thus quantifies the uncertainty of
the forecasts. This is indeed needed to support decision-making.
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We present our approach in this paper, which is organized as follows. In Sec.
2.1 an outlook of long-term load forecasting and our motivations are given. We
introduce Gradient Boosting (GB) of trees and probabilistic extensions in Sec.
2.2. We present our approach for feature engineering for load forecasting in
Sec. 2.3, and feature selection in Sec. 2.4. Temporal hierarchies are presented
in Sec. 2.5. In Sec. 3 we detailed review our pipeline with technical insights,
and competition results. We end this work with a critical conclusion in Sec. 4.

2 Methodology

2.1 Long-term Load Forecasting

Load forecasting is the problem of predicting the electricity demand of the next
H time steps, denoted by [yT+1, . . . , yT+H ]. When the order of magnitude of
H is a few hundred or more, we talk about long-term forecasting. For instance,
forecasting a year ahead at an hourly scale implies producing 24 × 365 = 8760
forecasts. Classical forecasting strategies [4] condition the forecast on the last
observations of the time series. However, this is not viable for long-term fore-
casting, since in this case yT+H is independent of yT . Long-term forecasting
is better addressed as a regression problem, adopting a rich set of explanatory
variables (features) regarding calendar effects, temperatures, etc. [7]. This ap-
proach allows adopting regression methods such as Gradient Boosting (GB) of
trees [11], which is indeed successful in long-term energy forecasting [32].

2.2 Gradient Boosting and Distributional forecasts

In fact, GB achieved top positions in the Global Energy Forecasting Com-
petitions (GEFCom) of 2012, 2014, and 2017 [18–20], in the M5 forecasting
competition [23], and competitions on tabular data [6]. The most popular im-
plementations are XGBoost, LightGBM, and CatBoost.

GB can be trained with different loss functions besides the traditional least
squares. For instance, GB trained to perform quantile regression won the GEF-
Com2014 probabilistic competition [12]. Yet, even quantile regression only re-
turns point forecasts without a predictive distribution. It is possible to train
different GB models, one for each desired quantile; but if the predicted quan-
tiles cross, the predictive distribution is invalid [29, 30]. The recent versions of
probabilistic GB of trees constitute a sounder approach [9,27,28] to probabilis-
tic forecasting. In this work, we adopt the LightGBM extended model of März
et al. [28], which returns the moments of the predictive distribution.

A successful implementation of GB requires anyway paying attention to
some possible issues. For instance, GB is generally unable to model a long-term
trend. If the time series is trendy, it is recommended to detrend it, fit the GB
model, and then add the predicted trend to the GB forecast [34]. Another pre-
processing step that is sometimes helpful is a logarithmic transformation which
stabilizes the variance of the target time series [31]. Moreover, GB is subject
to overfitting. The DART algorithm [33] solves the problem by introducing
Dropout regularization analogously to Neural Networks.
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2.3 Feature Engineering

The exogenous variables that are frequently used in load forecasting are related
to calendars and temperatures.

Calendar features Calendar variables allow to capture the seasonal patterns.
They are commonly modeled by categorical variables. For example, the day of
the week is represented by a categorical variable with seven levels. Holidays are
represented by a binary variable: 1 for holidays and 0 for non-holiday.

Lagged and rolling temperatures Temperature impacts energy consumption, by
driving the use of heating, ventilation, and air conditioning (HVAC) systems.
However, there is generally a delay between the change in temperature and the
change in energy consumption. We thus consider the lagged hourly tempera-
tures:

T (t− h), h = 1, 2, . . . , L (1)

where L is the maximum lag; and the rolling temperature’s statistics:

Tw
f (t) = f(T (t− 1), . . . , T (t− w)) (2)

where f(·) is some statistical function and w indicates the width of the window
of past values of hourly temperatures considered. For example, the moving av-
erage of the last 24 hours of temperature values is T 24

avg(t) =
1
24

∑24
h=1 T (t− h).

Aggregated indicators of temperature Aggregated features can capture the long-
term effect of temperature on energy load. They can be expressed as T̃ g

f (t)
where g is the aggregation period and f(·) is the aggregation function. These
features include, for example, the daily maximum and minimum values of the
temperature or the monthly standard deviation of the temperature.

In this paper, we propose additional aggregation functions (Tab. 1) borrowed
from signal processing [10,36], which to the best of our knowledge have not yet
been used in energy forecasting. They should be computed on the time series of
temperature, and provide insights about the variability and shape within the
aggregation period. For example, the crest factor measures the peak-to-average
ratio of a signal; a high daily crest factor corresponds to large variations of tem-
perature during the day, which generally increase energy demand; a low daily
crest factor corresponds to stable temperatures during the day, which generally
decreases energy demand.

2.4 Feature Selection

Feature engineering generates a large set of features, after which feature se-
lection is needed [22, 25]. We perform feature selection based on hierarchical
clustering and pairwise correlation of the features. The core of our approach
is Permutation Feature Importance (PFI), which measures the drop in perfor-
mance when a feature is randomly shuffled [5]. The size of the drop in perfor-
mance shows how much the model relies on that feature for prediction. PFI is
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Table 1. Signal Processing features for load forecasting.

RMS xRMS =
√

1
N

∑N
i=1 x

2
i

Peak value xp = max(|xi|)

Crest factor xcrest =
xp

xRMS

Impulse factor xif =
xp

1
N

∑N
i=1 |xi|

Margin factor xmf =
xp

(
∑N

i=1|xi|1/2)
2

Shape factor xsf = xRMS
1
N

∑N
i=1 |xi|

Peak to peak value xpp = max(xi)−min(xi)

Algorithm 1 Permutation Feature Importance

Require: A trained model and recorded score s on an evaluation dataset.
for feature xj , j = 1, . . . , d do

for each repetition k, k = 1, . . . ,K do
Randomly shuffle column j of the original evaluation set.
Compute the new score sk,j of the model on the perturbed set.

end for
Compute the importance of feature xj as Ij = s− 1

K

∑K
k=1 sk,j

end for

appealing since it can be applied to any model; it is easy to implement (Algo-
rithm 1); it can measure feature importance on the metric of the competition;
it can be computed out-of-sample.

However, shuffling a single feature can produce unrealistic results if features
are dependent. Furthermore, correlated features share importance, therefore
their relevance may be underestimated (substitution effect, [15]).

Clustered Permutation Feature Importance To solve such issues we propose
a novel approach, which we call Clustered Permutation Feature Importance
(CPFI). The method works as follows.

At first, groups of highly correlated features are identified by applying hier-
archical clustering on the correlation matrix of the features. For that, a measure
of dependence between each feature pair is computed using a correlation index,
Pearson’s or Spearman’s for instance. Then, all the variables of the same clus-
ter are shuffled, and the subsequent performance drop is computed. The more
orthogonal the information contained in different clusters, the more reliable the
estimate of importance. Finally, non-informative feature clusters are dropped.
Also, only one or few features can be selected from each relevant cluster based
on some measure of explanation with respect to the target, or some expert
advice. We propose a criterion for informativeness in Sec. 3.
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2.5 Temporal hierarchies

As a further tool to improve forecasting accuracy, we consider temporal hi-
erarchies [3]. For instance, assume that we want to generate forecasts at the
hourly scale (referred to as the bottom level). A temporal hierarchy creates
and combines forecasts also at coarser temporal scales (e.g., 2-hourly and 4-
hourly), referred to as the upper levels. The smoothness of the upper time
series enables enhanced modeling of long-term patterns. This process generally
improves forecasting accuracy at all levels [3, 24].

A temporal hierarchy works as follows. First, forecasts are independently
created at different temporal scales (base forecasts). For instance, Fig. 1 shows
a temporal hierarchy aimed at forecasting 4-hours ahead. It contains 4 forecasts
computed at hourly frequency (ĥ1, ..., ĥ4, bottom level); two forecasts computed

at 2-hour frequency (ĥ12, ..., ĥ34, intermediate level); one forecast computed

at 4-hour frequency (ĥ1234, top level). Generally, the base forecasts do not

sum up correctly and they are referred to as incoherent. For instance: ĥ12 ̸=
ĥ1 + ĥ2, ĥ34 ̸= ĥ3 + ĥ4, etc. Reconciliation [35] is the process of adjusting the
base forecast so that they become coherent, i.e., they sum up correctly. The
reconciled forecasts are denoted with a tilde and thus in the example of Fig. 1
after reconciliation, we have: h̃12 = h̃1 + h̃2, h̃34 = h̃3 + h̃4, h̃1234 = h̃12 + h̃34.

ĥ1234

ĥ34 ĥ12

ĥ1 ĥ2 ĥ3 ĥ4

Fig. 1. Temporal hierarchy for forecasting 4-hours ahead, using hourly forecasts
(bottom level), 2-hourly forecasts, and 4-hourly forecasts.

Temporal hierarchies require the mean and the variance of the base fore-
casts. The original algorithm [3] provides only the reconciled point forecast,
while the approach of [8] yields also a reconciled predictive distribution.

3 Experiments

The BigDEAL Challenge 2022 was divided in a qualifying match and a final
match. The qualifying match provided hourly load and hourly temperature
statistics (mean, median, min, max) of four weather stations for the period
2002-2006; see Fig. 2 for an example. It required forecasting the year 2007 given
the actual temperatures. This is referred to as ex-post setting. The final match
provided three years (2015-2017) of hourly load of three U.S. local distribution
companies (LDC), and hourly temperatures from six weather stations. The
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forecasted (ex-ante setting) 1-day ahead temperatures for 2018 were released
on a rolling basis, two months at a time. The forecasts for these periods were
to be delivered, in a total of six consecutive rounds. Both matches required
forecasts at hourly scale for the 24h, the values of the peak for each day, and
its time of occurrence (i.e. a discrete number between 1 and 24).

The qualifying match served as a support for participants to validate their
forecasting approach. Its ex-post setting is optimistic as actual temperatures
for the forecasting horizon are used. The ex-ante setting of the final match
instead represents a realistic scenario as forecasts are obtained from forecasted
temperatures. In the literature, the comparison of the two settings is used to
measure the effectiveness of the forecasting models [21], i.e. the influence of the
forecast errors is isolated in the input variables.

Fig. 2. Load (MW) and temperature Tavg (°F) of the qualifying match of the
BigDEAL challenge. For readability, we show data aggregated over 12 hours.

3.1 Performance measures

The organizers evaluated the forecasts of each match with three different tracks.

In the qualifying match the hourly forecasts (24× 365 = 8760) were scored
using the Mean Absolute Percentage Error (MAPE):

MAPE =
1

H

T+H∑
t=T+1

|yt − ŷt|
|yt|

× 100, (3)
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where yt and ŷt denote the actual and the forecasted value for time t. The
second metric was the Magnitude (M); it is the MAPE between the actual
and forecasted daily peak values (i.e., it refers to 365 forecasts with a one-year
horizon). We recall that MAPE has been criticized in the forecasting literature:
it penalizes over-estimation errors more than under-estimation ones [2] and
it is numerically unstable when dealing with values close to 0. To score the
prediction of peak hours the organizers used a third metric, called Timing (T),
which computes the Mean Absolute Error. For example, if the actual peak is
at 6 pm, and the forecasted peak time is at 8 pm, the error for that day is
|6− 8| = 2.

The final match scored the forecasts using Magnitude (M) and Timing (T),
plus an additional metric called Shape (S). However, the definition of Timing
was modified introducing a non-uniform cost for the error. Let us denote by Td
and T̂d the actual and the forecasted peak hour for a day d. Timing was then
defined as:

T =
1

|days|
∑

d in days

w(Td, T̂d),with

w(Td, T̂d) =


|Td − T̂d|, if |Td − T̂d| = 1,

2|Td − T̂d|, if 2 ≤ |Td − T̂d| ≤ 4,

10, if |Td − T̂d| ≥ 5

(4)

Shape (S) scored the shape of the forecast around the peak. To compute it, the
24h load forecasts of a day are normalized by the peak forecast of that day, and
the same is done for the actual load. Then the sum of absolute errors during
the 5-hour peak period (actual peak hour ± 2 hours) of every day is calculated.
We denote by ȳd and ¯̂yd the normalized actual and forecasted load for a day d;
ȳd = yd

max yd
, ¯̂yd = ŷd

max ŷd
. Shape is defined as:

S =
1

|days|
∑

d in days

∑
t in {Td,Td±1,Td±2}

|ȳd(t)− ¯̂yd(t)| (5)

Scoring the Predictive Distribution While the competition only assessed the
point forecasts, we also scored the distributional forecasts obtained from our
probabilistic models. In particular, we compared the probabilistic forecast of
our GB model (based on [28]) with those obtained after the application of the
temporal hierarchy. We scored the predictive distributions of the model using
the Continuous Ranked Probability Score (CRPS) [14]. Let us denote by F̂ the
predictive cumulative distribution function and by y the actual value:

CRPS(F̂, y) =

∫ ∞

−∞
(F̂(x)− 1(x ≥ y))2 dx (6)

With Gaussian F̂, the integral can be computed in closed form [14]. We then
scored the prediction intervals using the Interval Score (IS) [13]. Let us denote
by 1−α the nominal coverage of the interval (assumed 0.9 in this paper), by l
and u its lower and upper bound. We thus computed with the models, for each
hour, a 90% prediction interval and the score:

IS(l,u, y) = (u− l) +
2

α
(l− y)1(y < l) +

2

α
(y − u)1(y > u) . (7)
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We also report the proportion of cases in which the interval (l,u) contains y.

Skill score Let morigin and mnew be the results obtained by two different
models on a certain metric to be minimized. We denote the positive or negative
percentage improvement by the Skill score defined as:

Skill%(morigin,mnew) =
morigin −mnew

(morigin +mnew)/2
× 100 (8)

3.2 Qualifying Match

Here, we detail the building blocks of our implementation.

Baseline We started by modeling essential calendar features (Year, Month,
Week, Day, Weekday, Hour) and temperatures at the current time (Tavg, Tmed,
Tmin, Tmax). We applied a logarithmic transformation to the target variable
to stabilize its variance. Moreover, since the target variable has a long-term
increasing trend, we performed detrending. We fitted a Linear Regression (LR)
model (yi = β0+β1xi, where xi are progressive time indices with i = 1, . . . , T )
to the training data. We then subtracted the linear trend before fitting the
LightGBM model. At prediction, we added the extrapolated trend to the out-
of-sample predictions, followed by an exponential transformation, to obtain the
final forecast. With detrending: the residuals have a mean of 0, otherwise, they
are severely biased; we reduced the MAPE (H) of the baseline model from 6.18
to 4.81.

Cross-validation We used time series cross-validation to evaluate the perfor-
mance of each model, hyper-parameter tuning, and feature selection. The size
of the time window is typically chosen equal to the size of the test set on which
the final prediction is to be made. Hence, for the qualifying phase, the years
2004, 2005, and 2006 were used as out-of-sample folds.

Feature engineering Feature engineering was performed incrementally by adding
related feature blocks one step at a time. We found the following features to
be predictive for this competition:

- Additional calendar features: Holiday, Holiday name, Weekend, Week of

month, Season, Day of year, Days since last / until next holiday.
We transform the Holiday name string feature with label encoding.

- Lagged hourly temperatures: for each temperature variable (Tavg, Tmed,
Tmin, Tmax) lagged hourly temperatures were incorporated into the model,
ranging from a minimum lag of 1 hour to a maximum lag of 48 hours, for
a total of 192 new features.

- Temperature-based rolling statistics: for each temperature variable, and 4
different values of window widths (3 hours, 1 day, 1 week, 1 month), 5
statistical functions (mean, max, min, median, std) were computed, for a
total of 80 new features.
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- Aggregated temperature statistics: for each temperature variable, for 2 dif-
ferent aggregation periods (Year-Month-Day, Month-Hour), 11 aggregation
functions (mean, max, min, median, and centered RMS, crest factor, peak
value, impulse factor, margin factor, shape factor, peak to peak value) cou-
pled with the differences between the current temperature values and the
aggregated values were computed for a total of 88× 2 = 176 new features.
For example, we denote by T̃Y ear,Month,Day

max (t) the daily maximum, where
Year-Month-Day is the aggregation period, to be read from left to right.

Feature selection To evaluate our feature selection strategy, we carried out
multiple experiments. First, we assessed the model performance without any
feature selection (experiment a). Then, we applied the feature selection strategy
described in Sec. 2.4 after completing all feature engineering, on the entire set
of features added to the baseline model (experiment b). Finally, we performed
step-by-step feature selection whenever we added a new block of features to the
model, i.e. after adding lagged variables, after adding rolling variables, and so
on (experiment c).

Cluster permutations were executed 100 times, and mean values and stan-
dard deviations of performance drops were calculated against all the out-of-
sample folds. We consider a cluster of features informative if the importance
value fall within three standard deviations of the mean, above 0. Results are
presented in Tab. 2. Specifically, the columns for MAPE, Magnitude, and Tim-
ing present the results based on the respective competition metrics, whereas
columns a, b, and c correspond to the 3 experimental strategies employed. It is
important to note that, unlike experiment a, where the results were obtained
in a single training run, the results for experiments b and c were derived from
three different training runs, each one maximizing the metric of interest.

Table 2. Out-of-fold qualification results with feature selection methods.

MAPE (H) Magnitude Timing

a b c a b c a b c

Baseline 4.81 - - 4.43 - - 1.42 - -
Calendar 4.83 - 4.78 4.48 - 4.46 1.39 - 1.39
Lags 3.33 - 3.24 3.29 - 3.20 0.94 - 0.92
Roll lags 3.28 - 3.16 3.22 - 3.20 1.06 - 0.94
Agg stats 3.24 3.16 3.09 3.21 3.10 3.08 0.91 0.95 0.91

For illustration purposes, in Fig. 3, we present the feature selection results
obtained after incorporating lagged hourly temperatures into the model. Fig.
3a presents the dendrogram obtained from hierarchical clustering computed on
the Spearman correlation matrix, which is shown in Fig. 3b. With a threshold
value of 0.1, we identified 36 clusters. The cluster rankings that maximize,
respectively, the performance of MAPE, Magnitude, and Timing are visible in
Fig. 3c. For all the metrics, cluster 8 proved to be the most significant, followed
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by clusters 31, 7, 2, and 12. This suggests that most informative lags are at t-
{1, 2, 3, 4, 5, 6}, t-{11, 12}, and t-{25, 26}. Tab. 3 shows the clusters associated
feature set.

(a) Dendrogram (b) Correlation matrix

(c) CPFIs

Fig. 3. Hierarchical clustering (threshold of 0.1) (a) and Spearman’s correla-
tion matrix (b). The blue squares highlight the 36 clusters. In (c) Clustered
Permutation Feature Importance (CPFI) values are reported for each track.

Hyper-parameter optimization We used the Optuna framework [1] to tune the
learning control parameters of LightGBM, primarily: the max number of leaves
in one tree, the minimal number of data in one leaf, L1 and L2 regularization,
bagging and feature fractions, the number of estimators, and the learning rate.
The parameters are optimized for the best cross-validation performance, also
considering the standard deviation of the different folds. Optuna implements
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Table 3. Clustered Permutation Feature Importance: Top-5 clusters of lagged
temperatures that maximize performance indicators.

Cluster ID Feature Set

8 Tavg,med,min(t− 1), Tavg,med,min(t− 2)

31 Tavg,med,min(t− 11), Tavg,med,min(t− 12)

7 Tavg,med,min(t− 3), Tavg(t− 4)

2 Tavg,med,min(t− 5), Tavg,med(t− 6)

12 Tmax(t− 1), Tmax(t− 2), Tmax(t− 25), Tmax(t− 26)

time-budget optimization which was useful given the short deadlines of the
competition.

Results Our team was named “swissknife”; as reported in Tab. 4, we ranked
8th on the hourly forecast (H), 3rd on the Magnitude (M), 3rd on the Timing
(T).

Table 4. Leaderboard of Qualifying Match [17].

Team Rank H. Team Rank M. Team Rank T.

X-Mines 1 Amperon 1 RandomForecast 1
Amperon 2 Team SGEM KIT 2 Amperon 2
Yike Li 3 swissknife 3 swissknife 3

peaky-finders 4 peaky-finders 4 freshlobster 4
KIT-IAI 5 KIT-IAI 5 peaky-finders 5

Overfitters 6 EnergyHACker 6 Recency Benchmark
BelindaTrotta 7 BelindaTrotta 7 X-Mines 6

swissknife 8 Overfitters 8 BrisDF 7
Recency Benchmark VinayakSharma 9 BelindaTrotta 8
RandomForecast 9 SheenJavan 10 KIT-IAI 9
Team SGEM KIT 10 . . . SheenJavan 10

. . . Recency Benchmark 13 . . .
Tao’s Vanilla Benchmark 27 Tao’s Vanilla Benchmark 25 Tao’s Vanilla Benchmark 30

3.3 Final Match

For the final match, we followed the same pipeline tuned in the qualification
phase, with the exception of target transformation, which was not required as
the target variable was already stationary. Additionally, three LDC loads were
required to be forecasted (LDC1, LDC2, LDC3), and the temperature variables
come from six weather stations (T1, T2, T3, T4, T5, T6), without aggre-
gate statistics and geographical references. To further enhance performance,
we incorporated several techniques, including DART, probabilistic LightGBM,
and temporal hierarchies.

Feature selection The most important lagged temperatures were found at time
t-{1, 2, 3, 4, 5}, and t-{10, 11, 12}, and the most important rolling lag temper-
atures were found with w = {3hours, 1 day}. Fig. 4 shows that within the
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six weather stations, temperatures {T1, T2, T5} better explain LDC1. Anal-
ogously, LDC2 is better explained by {T3, T4}, and LDC3 by {T5, T6, T1}.
To save space, we do not present the Out-of-fold Top-20 features for LDC2 and
LDC3 in this paper, but the results are in line with those of LDC1. Hence, even
if according to the guidelines of the competition it was not necessary to rely
on the location of the data, our method nicely handles datasets with multiple
weather stations.

Fig. 4. Out-of-fold Top-20 Features Importance obtained after the last incre-
mental step of feature engineering (aggregated features) and feature selection,
for LDC1 at Round 1. On the y-axis, we reported SHAP (SHapley Additive
exPlanations) [26] values of the LightGBM model.

Regularization Using Dropout, the DART booster reduced the overfitting that
affects LightGBM with the standard booster. It also reduced the prediction
error, but training became slower since it required more boosting iterations.
We tested DART on the qualification data only when it was over. With 30’000
iterations, the MAPE (H) went from 3.24 to 2.83, and the Magnitude from
3.21 to 3.09. Hence, we included DART in the final match models.

Temporal hierarchies We built temporal hierarchies by summing the hourly
load and temperatures at the following scales: 2-hours, 4-hours, 6-hours, and
12-hours. We trained an independent probabilistic LightGBM-LSS [28] model
at each time scale. The model minimizes the Negative Log-Likelihood loss func-
tion. Gaussian distributional base forecasts were obtained at each temporal
scale for the same forecasting horizon H. We implemented probabilistic rec-
onciliation as formulated in [8]. In Tab. 5 (load profile) and Tab. 6 (peak),
we compare base and reconciled forecasts, using skill scores (S%); in Fig. 5
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we show some forecasts. Temporal hierarchy improves only slightly the point
forecasts, but more importantly the predictive distribution, with a skill score
of about 5% on CRPS and 10% on IS. We also tested 1-day aggregation with-
out further improvement for the bottom time series. As the previous feature
importance analyses showed, past values close to the conditioning time are the
most important variables for prediction. We came to the explanation that a
high-scale aggregation (empirically greater than 1 day) makes these variables
vanish. Instead, small hierarchies also improved peaks, as shown in Tab. 6 and
Fig. 5. Given the availability, the metrics we present for the final match refer
to actual competition values of Round 1-5 (Jan-Oct 2018).

Results We placed 6th (M), 6th (T), and 7th (S) [16], see Tab. 7.

Table 5. Reconciliation metrics for the load profiles; base (ŷ) and reconciled
(ỹ) forecasts, with skill scores (S%). Temporal hierarchy for forecasting using
hourly (bottom level), 2-hourly, 4-hourly, 6-hourly, and 12-hourly aggregations.

MAPE CRPS IS90% IC90% (%)

ŷ ỹ S% ŷ ỹ S% ŷ ỹ S% ŷ ỹ

LDC1 4.87 4.84 0.75 6.35 6.03 5.16 61.62 55.01 11.34 99.24 98.81
LDC2 5.02 4.99 0.52 10.92 10.44 4.49 101.35 90.39 11.43 99.07 98.49
LDC3 4.51 4.5 0.05 45.99 43.84 4.78 446.49 398.37 11.39 98.85 98.14

Table 6. Reconciliation metrics for the peaks; base (ŷ) and reconciled (ỹ) fore-
casts, with skill scores (S%). Temporal hierarchy for forecasting using hourly
(bottom level), 2-hourly, 4-hourly, 6-hourly, and 12-hourly aggregations.

Magnitude Timing Shape CRPSpeak

ŷ ỹ S% ŷ ỹ S% ŷ ỹ S% ŷ ỹ S%

LDC1 4.97 4.90 1.34 1.22 1.13 7.93 0.088 0.086 2.16 8.33 7.89 5.46
LDC2 5.51 5.48 0.52 1.26 1.23 1.87 0.102 0.101 1.11 15.73 15.13 3.85
LDC3 4.83 4.79 0.95 1.19 1.09 8.80 0.079 0.078 1.56 60.83 57.97 4.82

4 Conclusion

We described our experience in an international energy forecasting competition.
We introduced features borrowed from the literature of signal processing, a
novel strategy for feature selection, and we pointed out the improvement that
the DART booster allowed us to achieve over the traditional Gradient Boosting
(GB) of trees. Furthermore, we adopted a recent probabilistic extension of
LightGBM. A predictive distribution, instead of the point forecast solely, is of
great impact because the decision-making processes can rely on the uncertainty
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Fig. 5. Comparison of probabilistic forecasts, before and after the application
of the temporal hierarchy. The temporal hierarchy slightly improves the point
forecasts. It also shortens the prediction intervals without compromising their
reliability. The sample refers to three days (15-17 Aug 2018) for LDC1.

Table 7. Leaderboard of Final Match [16].

Team Rank M. Team Rank T. Team Rank S.

Amperon 1 KIT-IAI 1 KIT-IAI 1
Overfitters 2 Amperon 2 Amperon 2

peaky-finders 3 BelindaTrotta 3 Overfitters 3
Team SGEM KIT 4 Overfitters 4 X-mines 4

KIT-IAI 5 X-mines 5 SheenJavan 5
swissknife 6 swissknife 6 Rajnish Deo 6

Recency Benchmark 7 peaky-finders 7 swissknife 7
Energy HACker 8 Rajnish Deo 8 Recency Benchmark 8

Rajnish Deo 9 Team SGEM KIT 9 RandomForecast 8.5
X-mines 10 SheenJavan 10 Yike Li 8.5

. . . . . . peaky-finders 10
Tao’s Vanilla Benchmark 17.5 Recency Benchmark 14 . . .

Tao’s Vanilla Benchmark 18 Tao’s Vanilla Benchmark 16

Team Final Rank

Amperon 1
KIT-IAI 2

Overfitters 3
peaky-finders 4

X-mines 5
swissknife 6

Rajnish Deo 7
Team SGEM KIT 9
Recency Benchmark 10

. . .
Tao’s Vanilla Benchmark 14

inherent in the forecast. To the limits of our knowledge, these models have not
yet been adopted in energy forecasting. Moreover, with distributional forecasts,
we applied temporal hierarchies and further improved the results.

For future work, we intend to evaluate our method on other datasets and
improve the capabilities of other models, specifically Deep learning models for
energy forecasting.
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